top of page

               Caríssimos professores,

       A Secretaria de Estado da Educação e Qualidade do Ensino comprometida com o sucesso do processo de ensino e aprendizagem, busca fortalecer esse processo, subsidiando a formação dos docentes do Ensino Fundamental por meio de orientações pedagógicas. É importante reconhecermos que é através da educação e do conhecimento que acontecem todas as transformações do mundo globalizado no meio social, científico e tecnológico e isso nos leva a uma nova postura de inserção no contexto da nossa sociedade. Portanto, o Departamento de Políticas e Programas Educacionais através da Gerência do Ensino Fundamental elaborou o subsídio pedagógico tendo como compromisso educacional a responsabilidade social para provocar e promover o surgimento de atitudes críticas e inovadoras em nosso aluno, sendo de suma importância, visto que, o material elaborado se trata de um rico suporte de fortalecimento do processo de intervenção para a práxis do professor.

          Práticas motivadoras desenvolvidas pelo professor contribuem para a construção de uma aprendizagem significativa, mais envolvente, articulada e dinâmica permitindo aos alunos descobrirem, também na aprendizagem, uma maior identificação com a sua realidade social e ao mesmo tempo desenvolver a formação de valores para futuramente ser um homem mais humanizado.

            Professores, a PROBLEMOTECA é um projeto que traz uma coleção de problemas de diferentes tipos, desde os mais simples até os mais complexos, para serem trabalhados com estudantes do ensino fundamental e médio. O termo problemoteca surgiu em um artigo da doutora Katia Smole na revista Pátio de 2004. A partir desta referência, com base na revista Ciência Hoje, criamos a nossa problemoteca, que agora socializaremos com vocês. Ao trabalhar com esses problemas, os alunos têm contato com diferentes tipos de textos e desenvolvem sua capacidade de leitura e análise crítica, pois para resolver a situação proposta é necessário voltar muitas vezes ao texto a fim de lidar com os dados e analisá-los, selecionando os que são relevantes e descartando os supérfluos. Planejando o que e como fazer, encontrando uma resposta e testando-a para verificar se ela faz sentido, compreendendo melhor o texto. Isso gera uma atitude que não é passiva e solicita uma postura diferenciada frente à resolução de problemas.

            A partir da exploração desses problemas, o professor pode iniciar um trabalho que leve os alunos a confrontar opiniões, refletir sobre a finalidade, adequação e utilização dos dados apresentados no texto, interpretando e analisando o problema com mais atenção. É importante ressaltar que a necessidade de entender uma situação, de considerar os dados fornecidos, de colecionar dados adicionais, de descartar dados irrelevantes, de analisar e obter conclusões a partir dos dados, de imaginar um plano para a resolução e, finalmente, de resolver e verificar a coerência da solução são procedimentos importantes, tanto no entendimento de diferentes tipos de textos quanto nos problemas de matemática.

          Os problemas foram divididos em quatro categorias: 

         - Aritmética, que são resolvidos mediante raciocínio e cálculo.

         - Algébricos, que são resolvidos com o uso de equações.

         - Lógica Geral e Lógica de Linguagem.

     Entendemos que esses problemas se trabalhados conforme a metodologia que será apresentada, poderá contribuir com a autonomia dos estudantes na resolução de problemas.

 

                A CONSTRUÇÃO DE UMA PROBLEMOTECA

 

           A problemoteca surge a partir da preocupação em orientar o trabalho com a resolução de problema. Pensou-se em um subsídio para auxiliar os professores nas diversas formas de resolução dos problemas matemáticos. Os professores responsáveis pela construção deste site, acreditam que uma coletânea de diversos tipos de problemas, leva os alunos a se engajarem em um trabalho dinâmico, no tocante ao fazer/corrigir/acertar, para que deste modo se interessem pelos problemas e ganhem autonomia em sua resolução.

                Os problemas apresentados são fruto de um intenso trabalho de pesquisa, resolução, seleção e classificação de problemas. Durante a escolha, houve o cuidado de selecionar problemas com falta ou excesso de dados, convencionais e não convencionais, enigmas, com tabelas ou gráficos. Foram inclusos ainda alguns divertidos, outros com ilustrações irreverentes e todos com diferentes níveis de complexidade e dificuldade, mas que fosse realmente um desafio para os estudantes.

 

                METODOLOGIA DO TRABALHO COM A PROBLEMOTECA

 

                 Há várias formas de se trabalhar com os problemas da problemoteca; as dicas que daremos podem ser melhoradas e outras ideias podem surgir a partir da prática de cada professor em sua sala de aula.

 

                1º) Leitura, Análise e Discussão do Texto.

 

                Nesse momento a preocupação do professor é a leitura e a familiarização do estudante com o problema.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Algumas questões podem ser sugeridas:

 

Quais as personagens que aparecem no problema apresentado acima?

Diga, em sua opinião, quem é cada um deles? Por quê?

Qual o problema enfrentado por eles?

Qual informação sobre eles que influencia na resolução do problema?

Há alguma outra informação que dificulta a resolução do problema pelos amigos?

 

Essa e outras questões podem ser feitas tendo em vista um maior aprofundamento do contexto do problema.

 

2º) Discussão sobre o vocabulário do problema.

 

                   Nesse ponto, o professor pode aborda sobre o significado de algumas palavras no contexto do problema. Se os estudantes não falarem nenhuma palavra o professor deve perguntar sobre o significado daquelas que ele acha que os estudantes não tem muita certeza.

 

Há alguma palavra no texto que você não entendeu o significado?

Dê o significado de: margem, atravessar, embarcação, etc..

 

3º) Pensar em estratégias de resolução

 

                 Nessa hora o professor questiona sobre a melhor forma de resolver o problema. Deve ser dada oportunidade para as várias possibilidades de respostas. Nesse momento: desenhos, cálculos, gráficos, rabiscos, etc., são importantes. Se nenhuma resposta estiver ”correta”, o professor deve instigar os discentes com indagações que favoreçam uma nova abordagem por parte dos estudantes. No caso da travessia dos amigos um desenho como o da figura abaixo pode ser feito, ou não. Simplesmente o estudante pode dar a resposta de forma verbal.

Por exemplo: atravessa palito e gordinho, fica o bujão. Em seguida volta o Palito. Depois o bujão vai sozinho. Em seguida volta o gordinho. Finalizando com a volta de Palito e Gordinho novamente.

A resolução oral pode ser esclarecida pelo esquema baixo.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4º) Pensar na resposta encontrada

 

                   Nesse ponto o professor vai, junto com a turma, discutir sobre as respostas encontradas. O papel do professor é fazer com que os estudantes percebam que algumas respostas não são coerentes com a questão inicial do problema. Essa intervenção não pode ser de forma brusca, mas dialogada e discutida para que os discentes percebam os erros cometidos.

 

5º) Tratar dos aspectos conceituais envolvidos no problema

 

                Essa etapa é marcada pela exploração dos conceitos envolvidos de forma explícita e implícita no problema. Nesse momento o professor tem um papel ativo na sistematização dos conhecimentos matemáticos. Por exemplo:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                      No problema acima Giovani Geométrico é louco por polígonos. Fez o quadrado sombreado no qual os estudantes devem dizer a que fração do quadrado maior corresponde à parte sombreada. Ao tratar dos aspectos conceituais envolvidos no problema o docente pode abordar o conceito de polígono, deve ressaltar sobre uma das ideias envolvidas no conceito de fração que é a relação parte todo, além de trabalhar o conceito de frações equivalentes e também pode falar da relação entre fração e porcentagem.

                 Vamos analisar o problema do Giovani:

 

                          Os estudantes erram esse problema porque na relação parte todo (D22 – 5º ano) sempre há um inteiro dividido em partes iguais. Quando o inteiro não vem dividido em partes iguais os discentes têm dificuldades.

 

 

 

 

 

 

 

 

 

 

 

                 Portanto a Relação parte todo deve ser estendida para outros tipos de figura, mesmo quando a figura não vem dividida em partes iguais. Outras figuras também podem ser exploradas pelo professor como, por exemplo: que fração corresponde à parte em negrito?

 

 

 

 

 

 

 

 

 

      Dividindo afigura feita por Giovani em partes iguais temos:

 

 

 

 

 

 

 

 

 

 

               Na figura temos o quadrado maior dividido em 16 quadrados menores sendo que 8 deles estão sombreados, logo a parte sombreada corresponde a 8/16 do quadrado maior.

       Simplificando a fração 8/16 encontramos uma fração equivalente (D23 - 5º ano) a ela que é ½. Portanto 8/16 = ½.

       Ainda pode ser abordada a relação entre fração e porcentagem (D21 – 5º ano).

 

                Professores, até aqui, procuramos dar um direcionamento sobre a utilização da problemoteca; esperamos que os exemplos dados sejam úteis para a sua prática. Boa sorte e um bom trabalho.

 

Prof. Me. José de Alcantara Filho 

Idealizador da Problemoteca

Assessor Pedagógico 

Gerência de Ensino Fundamental - Anos Inicias e Anos Finais 

 

Prof. Esp. Lucas Pinto de Oliveira 

Assessor Pedagógico 

Gerência de Ensino Fundamental - Anos Inicias e Anos Finais 

 

 

bottom of page